

Total No. of printed pages = 8

**END SEMESTER (REGULAR/RETEST)
EXAMINATION, NOVEMBER/DECEMBER – 2024**

Semester : 1st

Branch : Common

Subject Code : Sc - 102

MATHEMATICS – I

Full Marks – 70

Time – Three hours

The figures in the margin indicate full marks for the questions.

1. Choose the correct answers : $1 \times 5 = 5$

(a) Square Root of $15 - 8i$ is

- (i) $4 + i$
- (ii) $4 - i$
- (iii) $\pm (4 - i)$
- (iv) $4 \pm i$

(b) Sum of cube roots of unity is

- (i) 1
- (ii) 0
- (iii) -1
- (iv) 3

[Turn over

(c) Middle term in $\left(x - \frac{1}{2x}\right)^6$ is

(i) 20

(ii) - 20

(iii) $-\frac{20}{8}$

(iv) $\frac{20}{8}$

(d) Value of $(2+\sqrt{3})^3 + (2-\sqrt{3})^3$ is

(i) 50

(ii) 52

(iii) $5\sqrt{3}$

(iv) $3\sqrt{3}$

(e) For $\log_a 16 = -4$, value of a is

(i) 2

(ii) 4

(iii) $\frac{1}{3}$

(iv) $\frac{1}{2}$

2. Fill in the blanks :

$1 \times 4 = 4$

(a) The value of ${}^5C_4 \times {}^3P_1$ is ____.

(b) If 4 parallel lines in a plane are intersected by 6 parallel lines, the number of parallelogram formed is ____.

(c) $\begin{pmatrix} 1 & 2 \\ -2 & 0 \\ 3 & 1 \end{pmatrix} + 2 \begin{pmatrix} 3 & -2 \\ 2 & 1 \\ -1 & 0 \end{pmatrix} = \text{_____}$.

(d) The third order unit matrix is ____.

3. Write True or False :

$1 \times 6 = 6$

(a) If $\cos \theta = \frac{4}{5}$, then $\tan \theta = \frac{1}{5}$

(b) $\sin^2 24^\circ + \sin^2 66^\circ = 2$

(c) $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

(d) $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$

(e) $\tan^{-1} x + \cot^{-1} \frac{1}{x} = 2 \tan^{-1} x$

(f) $\sin^{-1} \tan\left(\frac{3\pi}{4}\right) = \frac{3\pi}{4}$.

4. (a) Draw Argand diagram of

2

(i) $-6i$ (ii) $3 + i$

(b) Express as sum of simple algebraic fractions
(any two) : 2+2=4

(i) $\frac{2x-3}{x^2+6x+8}$

(ii) $\frac{2}{x^2-9}$

(iii) $\frac{1}{x(x^3+1)}$

(c) (i) In how many ways the letters of the word DAUGHTER be arranged without changing the order of the vowels in the word ? 2

Or

(ii) Out of 9 players and 13 singers how many different committees can be formed, each consisting of 3 players and 5 singers ? 2

(d) If $a^2 + b^2 = 7ab$, prove that 2

$$2 \log (a-b) = \log 5 + \log a + \log b.$$

5. (a) Expand up to 4th term : $(1 + 2x)^{-4}$ 2

(b) (i) If $\frac{1}{x+y}, \frac{1}{2y}, \frac{1}{y+z}$ are in AP, prove that x, y, z are in GP. 3

Or

(ii) Write the series for e^x and e^{-x}
Prove that : 3

$$\frac{1}{2}(e^x + e^{-x}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

(c) If $A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & -1 & 2 \\ -2 & 3 & 0 \end{pmatrix}$ find $\det(A)$. 2

(d) Evaluate (any two) : 2+2=4

(i)
$$\begin{vmatrix} 21 & 4 & -6 \\ 9 & 7 & 2 \\ 0 & -3 & 5 \end{vmatrix}$$

(ii)
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

$$(iii) \begin{vmatrix} 13 & 3 & 23 \\ 30 & 1 & 7 \\ 39 & 9 & 69 \end{vmatrix}$$

6. (a) Answer any one : 2×1=2

(i) If $\sin^4 \theta + \sin^2 \theta = 1$, prove that $\tan^4 \theta - \tan^2 \theta = 1$.

(ii) Solve $-2 \cos^2 \theta + \sin \theta = 1$.

(b) If $A + B + C = \pi$, prove that

$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}. \quad 3$$

(c) Answer any one : 2×1=2

(i) Prove that $\tan^{-1} x + \sin^{-1} x = \tan^{-1}$

$$\frac{x(1+\sqrt{1-x^2})}{\sqrt{1-x^2}-x^2}$$

(ii) If $\tan^{-1} x = 3$, find $\cos^{-1} x$.

(d) Prove that $2 \tan^{-1} \frac{1+x}{1-x} + \sin^{-1} \frac{1-x^2}{1+x^2} = \pi. \quad 3$

(e) (i) Apply cosine formula to prove $\cos \frac{c}{2}$

$$= \sqrt{\frac{s(s-c)}{ab}}.$$

(ii) Write sine Rule and cosine Rule for a triangle. 2+2=4

7. (a) A river is 96m wide. Its depth at a distance of x m from one bank is y m and is given as in the following table : 3

x : 0 12 24 36 48 60 72 80 96

y : 1 3 5 10 12 8 6 3 2

(b) Answer any two : 2+2=4

(i) A cuboidal water tank is 2m long, 3m wide, 4m deep. Find the volume of the water tank.

(ii) The height of a cylinder is 10 cm and the ratio of its volume to the lateral surface area is 3:2. Find its radius.

(iii) Find the volume of the largest sphere that can be cut out of a cube of volume 27 cubic cm.

(c) The frustum of a square pyramid is 15m high, the top base has area 5 sq.m. and bottom base has 9 sq.m. The top is capped by a pyramid of height 1m. Find the volume of the solid. 3

8. (a) (i) The vertices of a triangle are (5, 2), (3, 6), (0, 0), find its area.

(ii) Find equation to the straight line having gradient -2 and passing through (5, 1).

2+2=4

(b) Answer any *two* : 3+3=6

(i) Find locus of the point moving at equal distance from (3, -1) and (-2, 5).

(ii) A straight line is $3x - 2y + 1 = 0$. Find its distance from the point (1, 3). Write its intercepts on x-axis. Draw the line.

(iii) Find equation to the line parallel to $x - 5y + 3 = 0$ and passing through (4, 0).